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Consideration is given to the methods of solution of problems of calculation of elastoplastic thermal
stresses and strains which occur in heating of thermally massive bodies of a classical shape. The
influence of thermophysical nonlinearities on the dynamics of the process of heating is analyzed.

In heating of thermally massive steel billets and ingots, the problem of calculation and analysis of the
occurring (especially in the initial stage of the process) thermal stresses is topical and very significant. The
nature of the appearance of these stresses depends on the scheme of heating, the frequency and amplitude of
the heating sources, conditions of heat exchange with the ambient medium, the so-called fixity conditions,
and other factors.

The stresses varying in a wide temperature interval can attain significant values and exceed the per-
missible ultimate strengths of specific grades of steel. Therefore, prediction of the possible values of the oc-
curring temperature stresses enables one to evaluate the existing or designed regime of heating of a metal for
correspondence to the criterion of adaptability to streamlined production and to realize different structural
changes of the existing units for heating (heat treatment) of steel, etc.

The approaches to solution of the problems of thermoelasticity which are used by some authors are
based on (approximate) engineering procedures of calculation of the temperature fields and rely on a number
of simplifications required for analytical solution of such problems. The progress made in computer engineer-
ing makes it possible to conduct numerical experiments with a much higher accuracy of calculations and to
evaluate the influence of one factor or another on the development of the process under study.

The problem of control of the heating of a metal with allowance for the maximum permissible tem-
perature stresses assumes a successive solution of the problems of heat conduction and thermo-elastoplastic-
ity.

The process of heating of thermally massive products by radiation and convection simultaneously in
the case of a linear dependence of the thermophysical properties of a metal on the temperature is described
by the system of partial differential equations in dimensionless form
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where

ec = 
δc

c0
 Tm ;   eλ = 

δλ

λ0
 Tm .

Thermally Massive Plates. Let us consider the solution of the problem of calculation of thermal
stresses in an elastoplastic formulation for basic geometric shapes, i.e., a plate (m = 0) and a cylinder (m = 1).

Under combined loading, the deformation theory and the theory of flows [1] yield different results.
However if the strains develop in one direction, results of calculations according to both theories of plasticity
become closer.

For the plate under consideration, the coordinate plane YOZ is brought into coincidence with the mid-
dle plane of an unstrained plate while the OX axis is directed normally to the middle plane. The stresses σx,
τxy and τxz can be disregarded [2].

According to the hypothesis of straight normals [2], the strain of each point of the plate can be rep-
resented as a sum of the strain of the middle surface and the flexural strain:

εy = ε
__

y + xχy ,   εz = ε
__

z + xχz ,   γyz = γ
__

yz + xχyz .

In the case under consideration, the plane is unfixed and the temperature varies just over the thick-
ness. Therefore, we have

σy = σz = σ = σ (x) ,   τyz = 0 ,   εy = εz = ε = ε (x) ,  γyz = 0 .

We can write [3] that the force strain ε and the stresses σ are determined as

ε = B1 + B2x − αT ,   σ = 
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Having introduced the notation

f (x) =  ∫ 

−h

h
EαT
1 − ν

 (A1 − A2S − A2x + A3xS) dS − αT ,

K (x, S) = A1 − A2S − A2x + A3xS ,   Φ (S, ε (S)) = 
Eεpl

1 − ν
 ,

we write for the force strain ε
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ε (x) = ∫ 

−h

h

K (x, S) Φ (S, ε) dS + f (x) . (3)

Since the unknown strain appears in the function Φ, which in the general case is nonlinearly depend-
ent on ε, the resultant equation (3) is the nonhomogeneous integral equation of Hammerstein [4], where K(x,
S) is the kernel of the equation.

Assuming that the material of the plate has linear hardening, we can express the plastic strain as
follows:

εpl = (1 − Λ) (ε − sign ε εyield) .

In this case, the nonhomogeneous Hammerstein equation becomes the Fredholm integral equation of the sec-
ond kind [4]

ε (x) = f (x) + R ∫ 

−h

h

K (x, S) ε0 (S) dS

with the kernel

K
__

 (x, S) = 
E

1 − ν
 (1 − Λ) K (x, S) ,

where the parameter K(x, S) = 
E

1 − ν
(1 − Λ)(A1 − A2S − A2x + A3xS). The resultant integral equation of Fred-

holm is solved by the iteration method.
If we take ε0 = f(x) as the zero approximation, the iterative process converges when the kernel is

quadratically summable:

 ∫ 

−h

h

 ∫ 

−h

h

 K (x, S) 2 dxdS = B2

and R satisfies the condition |R|B < 1.
The above algorithm of computation of stresses and strains has been evaluated using test examples.

The case of bilateral cooling of a uniformly heated plate by a medium with an infinitely large coefficient of
heat transfer was considered as a test. In [3], the results obtained according to the method presented above
have been compared to the existing solutions [5, 6]. The error was no higher than 1%.

The body of mathematics presented enables one to analyze in detail the influence of thermophysical
and physicomechanical parameters on the dynamics of the heating of a metal and the dynamics of the tem-
perature stresses and also on the magnitude of the residual stresses.

In the numerical experiments, the temperature dependence of the parameters was assigned in the form
of a table approximating this dependence by a piecewise-linear function. The changes in the thermophysical
and physicomechanical parameters as functions of the temperature were taken from [7, 8]. In the case of a
constant value of the parameter, its magnitude was determined as the mean-integral one for its variation in
the interval of temperatures 273–1173 K.

The initial data for the numerical experiment were as follows: 2h = 0.27 m, T0 = 293 K, Tm = 1163
K, αconv = 70 W/(m2⋅K), and σrad = 2.3⋅10−8 W/(m2⋅K4); steel 45 was the metal used. As the mean-integral
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values of the parameters, we determined λ
__

 = 45.6 W/(m⋅K), E
__

 = 250 MPa, c
_

v = 5.05 MJ/(m3⋅K), σ
__

yield =
18.5⋅104 MPa, and α

__
 = 13.05⋅10−6 1/K.

Analysis of the results obtained shows that the heat capacity of the metal has the largest effect on the
dynamics of heating. The selection of a constant value of the heat capacity reduces the duration of heating
by almost 20%. Making such an assumption in calculations can lead to substantial errors in designing a heat-
ing device, in particular, to a disagreement between the calculated and actual output toward its reduction;
therefore, it can prove a restrictive factor in the train "furnace–rolling mill."

Figure 1 shows the influence of the thermophysical and physicomechanical characteristics of a metal
on the dynamics of the temperature stresses and on the magnitude of the residual stresses. It is clear that the
values of the former are independent, in practice, of the method of assignment of thermomechanical parame-
ters. At the same time, the values of the latter differ strongly by the end of the process. Taking the coeffi-
cient of linear expansion to be constant has the largest effect on the magnitude of the stresses. The adoption
of constant values of the parameters can lead to an error of 3 to 5 times in evaluating the magnitude of the
residual stresses toward their understatement and be the reason for premature failure of the rollers of the
rolling mill; it can also lead to unreliable results in realization of high-speed regimes of heating, etc.

After checking the adequacy of the algorithm proposed, the authors performed a thermomechanical
calculation of a steel plate in the case of its heating in a continuous furnace before rolling. The authors used
the following initial data for the calculation: thickness 0.27 m and grade of the steel 45; the technological
restrictions were as follows: surface temperature 1190oC and temperature difference 25oC; the regime of heat-
ing was three-stage.

The calculation results are given in Table 1. As follows from the data obtained, the massive plate
attains the required temperature difference and surface temperature in 5.5 h; throughout the regular stage of
heating, the temperature difference decreases. Analysis of the change in the temperature stresses shows that

Fig. 1. Influence of the temperature dependence of thermophysical and
physicomechanical parameters on the calculated maximum and residual
stresses in a plate. σmax, MPa; t, h.

12



they attain their maximum value (260.8 MPa) by the end of the inertial stage (360 sec). Thereafter the
stresses gradually decrease.

Figure 2 gives the distribution of elastoplastic zones in the plate in prolonged heating. It is clear that
in the initial period the elastoplastic strains develop from the heat-absorbing surface to the center of the plate.
Next, on further heating, the zones develop from the periphery to the center and from the center to the pe-
riphery. The elastic zone decreases as the plastic strains manifest themselves. However, despite the significant
surface temperature and temperature differences, the elastoplastic zone fails to cover the entire cross section
of the plate by the end of the process of heating. This, in turn, can lead to the breakage of plane ingots and
billets in subsequent rolling of them on blooming and plate mills and also to the deflections and buckling of
the metal in heating.

Thermally Massive Cylinders. It proved difficult to obtain the analogous computational algorithms
for determination of the fields of temperature stresses for a cylinder. Therefore, the authors used a somewhat
different approach to the formulation and solution of the problem of thermoplasticity. In particular, the calcu-
lational relations were derived with allowance for the linear change in the thermophysical and physi-
comechanical characteristics of the cylinder material as a function of the temperature.

TABLE 1. Change in the Temperatures T, the Elastic εel and Plastic Strains εpl, and the Stresses σ on the Surface
and at the Center of a Massive Plate on Prolonged Heating before Rolling

t, sec T, oC εel εpl σ, MPa Sign of load

360 195 –0.00122 –0.00071 –360.8 0
20 0.00062 0 189.0 0

2160 451 –0.00097 –0.00079 –259.0 0
320 0.00075 0 214.0 0

3960 659 –0.00054 –0.00315 –126.9 0
527 0.00082 0.00013 207.9 0

5760 821 0.00030 –0.00266 60.5 2
705 –0.00004 0.00030 –8.8 1

7560 921 0.00022 –0.00213 37.7 2
828 –0.00010 0.00030 –20.5 1

9360 999 0.00026 –0.00185 39.2 2
924 –0.00018 0.00030 –31.5 1

11160 1059 –0.00030 –0.00163 38.9 2
998 –0.00026 0.00030 –38.0 1

12960 1106 0.00033 –0.00146 37.8 2
1056 –0.00030 0.00029 –39.0 2

14760 1125 0.00034 –0.00128 37.1 2
1086 –0.00031 0.00025 –38.4 2

16560 1154 0.00035 –0.00116 35.8 2
1122 –0.00034 0.00024 –37.2 2

18360 1177 0.00037 –0.00107 34.6 2
1151 –0.00035 0.00024 –36.0 2

20160 1190 0.00038 –0.00101 33.5 2
1165 –0.00037 0.00022 –34.8 2

Note: 1) the upper line corresponds to the calculated data on the surface (ρ = 1), while the lower line
corresponds to the data at the center of the plate (ρ = 0); 2) in the last column, 0 denotes load, 1 denotes
unloading, and 2 denotes reverse flow.
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Since the solution of the problem of thermal stresses is aimed at performing calculations for thermal
stability, we assume that in the inertial stage the values of the thermal stresses attain their  maximum by the
end of the inertial period (for the maximum values of the temperature differences). In selection of the yield
conditions for steel, being guided by the recommendations of [9], we make the assumption of the incom-
pressibility of the material in the zone of plastic strains. We assume that the zone of plastic strains appears
on the peripheral layers of the cylinder, while in the axial zone the metal is ideally elastic.

For the convenience of mathematical transformations we will use dimensionless quantities. We as-
sume that the elastic modulus, the coefficient of linear expansion, and the yield strength can be approximated
by the linear dependences

 E (Θ) = E0 (1 + eEΘ) ,   α (Θ) = α0 (1 + eαΘ) ,   σyield (Θ) = 1 − eσyield
Θs ,

where

eE = 
δE

E0
 Tm ;   eα = 

δα

α0
 Tm ;   eσyield

 = δσyield
Tm .

It is necessary to note that in heating of massive ingots and billets the most dangerous are longitudi-
nal tensile stresses on the axis of the body; in the case of the free ends of an infinitely long cylinder they
will be written [10] as

σz = σr + σθ .

Using the solution of the temperature problem (1) and (2) and omitting the intermediate mathematical
computations [11], we write:

• the stresses in the zone of elastic strains

σr
el = C  1 + eE (Θs − A (1 − ρ2))  





eαAΘs − eαA2 + A

4
 (ρpl 0

2  − ρ2) + 
eαA2

12
 (ρpl 0

3  − ρ3)



 +

+ ln ρpl 0 (− eσyield
A − 1 + eσyield

Θs) − 
eσyield

A (1 − ρpl 0
2 )

2
 , (4)

Fig. 2. Distribution of elastoplastic zones in a plate ingot in the case of
prolonged heating: 1) zone of elastic strains; 2) zone of plastic strains. t,
sec.
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σθ
el = C  1 + eE (Θs − A (1 − ρ2))  





eαAΘs − eαA2 + A

4
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12
 (ρpl 0

3  − ρ3) − 
eαA2

4
 ρ4




 +

+ ln ρpl 0 (− eσyield
A − 1 − eσyield

Θs) − 
eσyield

A (1 − ρpl 0
2 )

2
 ; (5)

• the stresses in the zone of plastic strains

σr
pl = ln ρ (− eσyield

A + 1 + eσyield
Θs) − 

eσyield
A (1 − ρ2)

2
 , (6)

σθ
pl = ln ρ (− eσyield

A + 1 − eσyield
Θs) − (1 − eσyield

Θs) − 
3eσyield

A (1 − ρ2)

2
 . (7)

The boundary of the plastic zone ρpl0 is found from the expression

C  1 + eE (Θs − A (1 − ρpl 0
2 ))  




− 

eαAΘs − eαA2 + A

2
 ρpl 0

2  + 
eαA2

6
 ρpl 0

3  − 
eαA2

2
 ρpl 0

4



 =

= − 

1 − eσyield

 (Θs − A (1 − ρpl 0
2 ))


 . (8)

In expressions (4)–(8), we have adopted the following notation: A = {Sk [1− Θs
4(Fo)] + Bi [1

− Θs(Fo)]}/{2 [1 + eλΘs(Fo)]} in the regular stage, A = {Sk + Bi [1 − Θ0]}/{2 [1 + eλΘ0] + Bi} in the inertial
stage, and C = {α0E0Tm}/{(1 − ν)σyield0}.

Thus, we can propose the following algorithm of solution of the problem of thermomechanics:
(1) we determine the duration of the inertial period Fo0 and the surface temperature Θ1s

0 ;
(2) we find the thermomechanical constants and the value of ρpl 0 from formula (8);

Fig. 3. Dynamics of thermal stresses (a) and the advance of the bound-
ary of the plastic-strain zone ρ0 (b) with time in a cylindrical ingot in
relation to the selected variant of change of the thermophysical and
physicomechanical properties of the metal: 1) λ(T), c(T), E(T), and α(T);
2) λ(T), c(T), E(T), and α

__
; 3) λ(T), c(T), E

__
, and α(T); 4) λ(T), c(T), E

__
,

and α
__

; 5) λ
__

, c(T), E(T), and α(T); 6) λ, c
_
, E(T), and α(T); 7) λ

__
, c

_
, E

__
,

and α
__

. σz, Pa; t, h.
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(3) for ρ ≥ ρpl 0 we calculate the stresses in the zone of plastic strains from formulas (4) and (5) (if
it exists) and the stresses in the zone of elastic strains (for ρ < ρpl 0) from formulas (6) and (7);

(4) based on the solutions of Eqs. (1) and (2) we determine Θ2s(Fo) at the instant of time Fo and,
substituting its value into (4)–(8) in the order presented earlier, we find the distribution of the temperature
stresses over the cross section of the body at this instant.

Just as for the case of a plate, the authors analyzed the influence of the thermophysical and physi-
comechanical properties of a metal on the values and development of elastoplastic stresses in heating of ther-
mally massive bodies of a cylindrical shape.

Because of the fact that tensile stresses are the most dangerous from the viewpoint of the discontinu-
ity of a material we confine ourselves to an analysis of the axial tensile stresses.

In the calculations, we took 2R = 0.23 m, T0 = 20oC, Tm = 1300oC, αconv = 30 W/(m2⋅K), σrad =
3⋅10−8 W/(m2⋅K4), steel 45, λ = 35 W/(m⋅K), cv = 5 MJ/(m3⋅K), E = 185 MPa, and α = 15⋅10−6 1/K as the
initial data.

The calculation results are presented in Fig. 3. As follows from the given plots, taking the elastic
modulus to be a constant leads to a decrease of 6 to 7% in the level of stresses, which can create an unjus-
tifiably overstated regime of heating in selecting the temperature regime of a heating device. The calculation
according to other variants give values of the maximum stresses 6 to 20% lower on the average than calcu-
lation with variable parameters. The dynamics of change of the stresses and the boundary of the plastic zone
substantially depends on the thermophysical properties and mainly on whether the heat capacity is assigned
to be a constant or a variable.

Conclusions. The results obtained by the authors demonstrate that when the temperature regimes of
heating of steel in industrial furnaces are selected according to the conditions of thermal stability it is neces-
sary to calculate the occurring thermal stresses with allowance for the variability of thermophysical and
physicomechanical properties. The developed methods of modeling of the heating of massive steel products
in the shape of a plate and a cylinder according to the conditions of their thermal stability have been used in
the calculations of industrial furnaces operating in the trains of rolling mills (tubular, plate, section, and axle)
of metallurgical processes.

NOTATION

ξ = x/R, Θ(ξ, Fo) = T(x, t)/Tm, Θ0 = T0
 ⁄ Tm, Θs = Ts

 ⁄ Tm, and Fo = at/R2, dimensionless coordinate,
running, initial, and surface temperatures, and time, respectively; a, thermal diffusivity of the body; R, char-
acteristic dimension of the body; m, shape factor of the body; x, T(x, t), T0, Ts, Tm, and t, absolute coordinate
(reckoned from the center), running, initial, surface, and heating-medium temperatures, and time respectively;
Bi = αconvR ⁄ λ and Sk = σradTm

3 R ⁄ λ, Biot and Stark numbers respectively; αconv and σrad, coefficients of heat
transfer by convection and radiation; λ, thermal conductivity of the body; ε

_
y, ε

_
z, and γ

_
yz, strains of the middle

surface; χy, χz, and χyz, curvature that can be expressed in terms of the deflection of the plate ux in the case
of small deflections [2]: χy = ∂2ux

 ⁄ ∂y2, χz = ∂2ux
 ⁄ ∂z2, and χyz = ∂2ux

 ⁄ ∂y∂z; ε, strain; σx, σy, σz, τxy, τyz, and
τxz, tensors of normal and tangential stresses in the plate; E, elastic modulus; α, coefficient of linear expan-
sion; εpl, plastic strain; h, plate thickness; S, integration variable; ν, Poisson coefficient; Λ = Et

 ⁄ E, dimension-
less parameter of hardening; Et, tangential modulus in the hardening region; εyield, strain corresponding to the
yield strength; σyield, yield limit; E0, α0, σyield0, c0, and λ0, elastic modulus, coefficient of linear expansion,
yield strength, heat capacity, and thermal conductivity at the initial temperature respectively; δE, δα, δσyield

,
δc, and δλ, slopes of the straight lines E−T, α−T, σyield−T, c−T, and λ−T; σz, σr, and σθ, axial, radial, and
tangential stresses for the cylinder; ρ, distance from the center of the cylinder; ρpl 0, boundary of the plastic
zone; cv, heat capacity per unit volume; Fo0, duration of the inertial period; Θ1s

0 , surface temperature at the
end of the inertial period; Θ2s(Fo), surface temperature at the instant of time Fo in a regular stage of heating.

16



Subscripts and superscripts: 0, initial; s, surface; m, medium; conv, convection; rad, radiation; t, tangential; x,
y, z, coordinate axes; yield, yield; el, elastic; pl, plastic; max, maximum.
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